Posts: mathematics

Careers in Origami

A version of this article previously appeared in OrigamiUSA’s The Fold online magazine. Perhaps you’ve heard that there are professional origami artists. Yes, there are a few: myself, Joseph Wu, Michael LaFosse, Paul Jackson, and Sipho Mabona for starters. (And lots of others: if I’ve left you out, my apologies—it’s assuredly not a complete list.) […]

Continue Reading

Computational Origami

This page contains links to computational tools useful for origami design and for combining origami with mathematical or scientific applications. See here for additional links about origami math, science, and technology. See here for additional links not specifically related to mathematical and scientific origami. If you’ve got a computational origami tool you’d like listed, send […]

Continue Reading

Polypolyhedra in Origami

These images show what the (first) 54 polypolyhedra would look like if created using the Ooh and Ow unit joints (Ow being Francis Ow’s mechanism for joining struts at angles up to 90 degrees, Ooh being my own similar mechanism for larger angles). Polypolyhedron 1. Polypolyhedron 2. Polypolyhedron 3. Polypolyhedron 4. Polypolyhedron 5. Polypolyhedron 6. […]

Continue Reading

Polypolyhedra in Dowels

These images show what the (first) 54 polypolyhedra would look like if created using round dowels of the maximum possible diameter. Polypolyhedron 1. Polypolyhedron 2. Polypolyhedron 3. Polypolyhedron 4. Polypolyhedron 5. Polypolyhedron 6. Polypolyhedron 7. Polypolyhedron 8. Polypolyhedron 9. Polypolyhedron 10. Polypolyhedron 11. Polypolyhedron 12. Polypolyhedron 13. Polypolyhedron 14. Polypolyhedron 15. Polypolyhedron 16. Polypolyhedron 17. […]

Continue Reading

Polypolyhedra

Background In 1999, I became interested in a family of origami modulars composed of interwoven polygonal frames and/or polyhedral skeletons, the most famous of which was devised by Tom Hull, which he titled Five Intersecting Tetrahedra, now commonly known by its abbreviation, FIT. (See here for a description.) The underlying polyhedron—a compound of five tetrahedra […]

Continue Reading

Science Links

This page contains various and sundry links to web pages that combine origami with mathematical or scientific applications. See here for links related to computational origami (software for origami design and analysis). See here for additional links not specifically related to mathematical and scientific origami. Please let me know if you find any broken links […]

Continue Reading

Origami Conferences

Since 1989, there have been several highly successful international scientific conferences exploring the interactions between origami, mathematics, science, and (since 2001) education. The conferences take place at irregular intervals—basically, whenever a general chair and sponsoring organization decide that the time has come for the next. Beginning in 2015, the OSME series of conferences is guided […]

Continue Reading

4OSME

2006-10-16 Update: 4OSME was a rousing success! Over 165 people attended some 70 talks. The 4OSME proceedings has been published by A K Peters, Ltd (now part of CRC Press). Several media groups covered 4OSME. See photographs and a trailer from Green Fuse Films’ Peabody-award-winning documentary on origami (portions of which were filmed at 4OSME), […]

Continue Reading

Angle Quintisection

This figure shows the key step in performing an origami angle quintisection—division into equal fifths—by folding alone. Within the mathematical theory of origami geometric constructions, the seven Huzita-Justin axioms define what is possible to construct by making sequential single creases formed by aligning combinations of points and lines. It has been mathematically proven that there […]

Continue Reading

Huzita-Justin Axioms

At the First International Meeting of Origami Science and Technology, Humiaki Huzita and Benedetto Scimemi presented a series of papers, in one of which they identified six distinctly different ways one could create a single crease by aligning one or more combinations of points and lines (i.e., existing creases) on a sheet of paper. Those […]

Continue Reading

OrigamiUSA’s The Fold

Starting in November, 2010, I began writing a regular column on crease patterns (with occasional forays into other topics) for OrigamiUSA’s then-new online publication, The Fold. You’ll need to be a member of OrigamiUSA to read the articles, but in my highly biased opinion, it’s well worth the cost (not just for my articles, but […]

Continue Reading

ReferenceFinder

Background Update (2024): Mu-Tsun Tsai has created a web-based version of ReferenceFinder (and fixed a longstanding bug in the original source code along the way). He is continuing to develop this version: follow it here. You can also find the original source code (with bug corrected) on my own GitHub repo. During the development of […]

Continue Reading
SEARCH BY TOPIC